Search results for "Low intensity pulsed ultrasound"

showing 1 items of 1 documents

Effect of Low-Intensity Pulsed Ultrasound on Osteogenic Human Mesenchymal Stem Cells Commitment in a New Bone Scaffold

2017

Purpose Bone tissue engineering is helpful in finding alternatives to overcome surgery limitations. Bone growth and repair are under the control of biochemical and mechanical signals; therefore, in recent years several approaches to improve bone regeneration have been evaluated. Osteo-inductive biomaterials, stem cells, specific growth factors and biophysical stimuli are among those. The aim of the present study was to evaluate if low-intensity pulsed ultrasound stimulation (LIPUS) treatment would improve the colonization of an MgHA/Coll hybrid composite scaffold by human mesenchymal stem cells (hMSCs) and their osteogenic differentiation. LIPUS stimulation was applied to hMSCs cultured on …

0301 basic medicineMaterials scienceCellular differentiation0206 medical engineeringLow intensity pulsed ultrasoundBiomedical EngineeringBiophysicsBioengineeringHuman mesenchymal stem cell02 engineering and technologyLow-intensity pulsed ultrasoundHuman mesenchymal stem cellsBiomaterials03 medical and health sciencesTissue ScaffoldTissue engineeringTissue scaffoldsOsteogenesisOsteogenic differentiationHumansOriginal Research ArticleCells CulturedBone growthTissue EngineeringTissue ScaffoldsOsteogenesiMesenchymal stem cellCell DifferentiationMesenchymal Stem CellsBone scaffoldGeneral MedicineMgHA/Coll hybrid composite scaffold020601 biomedical engineeringMesenchymal Stem Cell030104 developmental biologyUltrasonic WavesLow intensity pulsed ultrasoundsHumanBiomedical engineeringJournal of Applied Biomaterials & Functional Materials
researchProduct